Welcome Opportunities Education Campus Map Contact 中文
Home About Research People International Opportunities Facilities MyDICP
People
Overview
Director Profile
Executive Board
Faculty and Staff
Member of CAS and CAE
Distinguished Young Scholars Recipients
 
Location: Home >> People
   Can Li
Title: Professor, Group 503
Subject: Chemical Physics
Phone: N/A
Email: N/A
Website: www.canli.dicp.ac.cn
Address: 457 Zhongshan Road,Dalian,China,116023
Resume:

Prof. Can Li has been working on both fundamental and applied research in catalysis and making efforts to reveal the essential relationship between catalytic performance and catalyst structure, and try to understand catalysis at various levels including atomic, molecular as well as nanometer scales and to apply these understandings to the designs and the development of practical applications in energy (solar fuels), fine chemicals (chiral synthesis) and environmental sciences (ultra-deep desulfurization of fuels). In particular to understand the fundamental of catalysis by developing in situ spectroscopy (e.g., UV Raman, Time resolved vibrational and electronic spectroscopy) to characterize the catalyst structure, and catalytic reactions.

Can Li has been the Director of the State Key Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Sciences since 1998, and the former Chairman of the Catalysis Society of China (2005-2012), and the former President of International Association of Catalysis Societies (2008-2012), and current President of The Asia-Pacific Association of Catalysis Societies. Can Li was elected a Member of the Chinese Academy of Science in 2003, a Member of The Academy of Science for Developing Countries (TWAS) in 2005, and a Foreign Member of Academia Europea in 2008, a Fellow of the Royal Society of Chemistry in 2008.

Can Li has received numerous awards and honors for his contributions to the advancement of the catalysis sciences and technology. Among the prestigious ones include the International Catalysis Award for his outstanding contributions to catalysis in micro- and mesoporous in general, and of UV Raman identification of active sites and confinement effects in chiral synthesis in particular; National Natural Science Prize for his contribution to the UV Resonance Raman Spectroscopy for characterizing catalysts particularly of semiconductor based photocatalysts and transition metal containing zeolites for selective oxidations; Ho Leung Ho Lee Prize (HLHL Foundation from Hong Kong) for his contribution to the development of chiral synthesis in nanoreators by bridging the heterogeneous and homogenous catalysis, and National Petrochemical Prize for his contribution to the development and commercialization of ultra deep desulfurization with emulsion catalysis and layered bulk catalysts in China. In the last decade, Can Li has made significant contribution to the solar fuels production via photocatalytic and photoelectrocatalytic water splitting and CO2 reduction by developing new concepts in photocatalysis (such as photogenerated charge separation with phase junction, between different facets, and dual co-catalysts strategy). Can Li has ~ 600 publications, ~ 13000 citations, an H-index ~ 60, ~ 60 granted patents and over 70 plenary and keynote lectures at international conferences.

Physical Chemistry, Environmental Catalysis, Chiral Catalysis, Photo(electro)catalysis, Biocatalysis, In-situ Characterization of Catalytic Reaction, Time-resolved Spectroscopy

2011 

National Award for Natural Sciences of China 

2008 

Elected to the Foreign Member of Academia Europaea 

2005 

Outstanding Achievement Prize of the Chinese Academy of Sciences 

2005 

Elected to the Member of TWAS (The Academy of Sciences for Developing Countries) 

2005 

HLHL (Ho Leung Ho Lee) Prize 

2005 

Fellow of Royal Society of Chemistry, FRSC 

2004 

International Catalysis Award 

2003 

Elected to the Academician of the Chinese Academy of Sciences 

2003 

Invited Professorship, Université Pierre et Marie Curie, Paris VI, France 

2003 

National Award for Outstanding Scientists Returned from Overseas 

2001 

Japan Science Promotion Society Visiting Professorship 

1999 

National Technology Innovation Prize of China 

1999 

National Award for Excellent Scientists in China 

1998 

National Award for Outstanding Young Scientists in China 

1997 

Hong Kong “Qiu-Shi” Award for Outstanding Young Scientists 

1996 

NSF Fund for Outstanding Young Scientists of China 

1994 

National Award for Excellent Young Researchers in China 

1993 

Outstanding Young Scientist Awarded by the Chinese Academy of Sciences 

1993 

Natural Science Prize of the Chinese Academy of Sciences 

A UV Raman Spectroscopic Identification of active sites in Zeolites and Zeolite Synthesis

 A-1 UV resonance Raman spectroscopic identification of titanium atoms in the framework of TS-1 zeolite, Can Li*, Guang Xiong, Qin Xin, Jianke Liu, Pinliang Ying, Zhaochi Feng, Jian Li, Wubin Yang, Yongzhong Yang, Guiru Wang, Xiyao Liu, Min Lin, Xieqing Wang and Enze Min, Angewandte Chemie International Edition, 1999, 38: 2220-2222. (citations: 127)

A-2 Characterization of iron atoms in the framework MFI-type zeolites by UV resonance Raman spectroscopy, Yi Yu, Guang Xiong, Can Li and Fengshou Xiao*, Journal of Catalysis, 2000, 194: 487-490. (citations: 36)

A-3 Identifying the isolated transition metal ions/oxides in molecular sieves and on oxide supports by UV resonance Raman spectroscopy, Can Li*, Journal of Catalysis, 2003, 216: 203-212. (Invited paper for 40th Commemorative Issue) (citations: 85)

A-4 Framework Fe ions in Fe-ZSM-5 zeolite studied by UV resonance Raman spectroscopy and density functional theory calculations, Keju Sun, Fengtao Fan, Haian Xia, Zhaochi Feng, Weixue Li and Can Li*, Journal of Physical Chemistry C, 2008, 112: 16036-16041. (citations: 21)

A-5 In situ UV Raman spectroscopic study on the synthesis mechanism of AlPO-5, Fengtao Fan, Zhaochi Feng, Keju Sun, Meiling Guo, Qiang Guo, Yu Song, Weixue Li and Can Li*, Angewandte Chemie International Edition, 2009, 48, 8743-8747. (citations: 25)

A-6 UV Raman spectroscopic studies on active sites and synthesis mechanisms of transition metal-containing microporous and mesoporous materials, Fengtao Fan, Zhaochi Feng and Can Li*, Accounts of Chemical Research, 2010, 43: 378-387. (citations: 33)

A-7 UV Raman spectroscopic study on the synthesis mechanism and assembly of molecular sieves, Fengtao Fan, Zhaochi Feng and Can Li*. Chemical Society Reviews, 2010, 39: 4794-4801. (citations: 18)

A-8 A Thorough Investigation on the Active Titanium Species in TS-1 Zeolite by In Situ UV Resonance Raman Spectroscopy, Qiang Guo, Keju Sun, Zhaochi Feng, Guanna Li, Meiling Guo, Fengtao Fan*, and Can Li*, Chemistry-A European Journal, 2012, 18: 13854-13860. (citations: 10)

B UV Raman Spectroscopic Characterization of Photocatalysts (phase junction)

B-1 Phase transformation in the surface region of zirconia detected by UV Raman spectroscopy, Meijun Li, Zhaochi Feng, Guang Xiong, Pinliang Ying, Qin Xin, Can Li*, Journal of Physical Chemistry B, 2001, 105: 8107-8111. (citations: 127)

B-2 UV Raman spectroscopic study on TiO2. I. Phase transformation at the surface and in the bulk, Jing Zhang, Meijun Li, Zhaochi Feng, Jun Chen and Can Li*, Journal of Physical Chemistry B, 2006, 110: 927-935. (citations: 312)

B-3 Surface phases of TiO2 nanoparticles studied by UV Raman spectroscopy and FT-IR spectroscopy, Weiguang Su, Jing Zhang, Zhaochi Feng, Tao Chen, Pinliang Ying and Can Li*, Journal of Physical Chemistry C, 2008, 112: 7710-7716. (citations: 54)

B-4 Importance of the relationship between surface phases and photocatalytic activity of TiO2, Jing Zhang, Qian Xu, Zhaochi Feng, Meijun Li and Can Li*, Angewandte Chemie International Edition, 2008, 47: 1766-1769. (citations: 343)

B-5 Enhancement of photocatalytic water oxidation activity on IrOx-ZnO/Zn2-xGeO4-x-3yN2y catalyst with the solid solution phase junction, Baojun Ma, Jinhui Yang, Hongxian Han, Jiantao Wang, Xiaohong Zhang and Can Li*, Journal of Physical Chemistry C, 2010, 114: 12818-12822. (citations: 20)

B-6 Photocatalytic Overall Water Splitting Promoted with α-β Phase Junction on Ga2O3, Xiang Wang, Qian Xu, Mingrun Li, Shuai Shen, Xiuli Wang, Yaochuan Wang, Zhaochi Feng, Jingying Shi, Hongxian Han and Can Li*, Angewandte Chemie International Edition, 2012, 51, 13089-13092. (citations: 41)

C Catalytic Reactions in Nanoreactors

C-1 Enantioselective epoxidation of olefins catalyzed by Mn(salen)/MCM-41 synthesized with a new anchoring method, Song Xiang, Yiliang Zhang, Qin Xin and Can Li*, Chemical Communications, 2002, 2696-2697. (citations: 122)

C-2 Asymmetric epoxidation of allyl alcohol on organic-inorganic hybrid chiral catalysts grafted onto the surface of silica and in the mesopores of MCM-41, Song Xiang, Yiliang Zhang, Qin Xin and Can Li*, Angewandte Chemie International Edition, 2002, 41: 821-824. (citations: 72)

C-3 Chiral synthesis on catalysts immobilized in microporous and mesoporous materials, Can Li*, Cataysis Reviews, 2004, 46: 419-492. (citations: 237)

C-4 Chiral catalysis in nanopores of mesoporous materials, Can Li*, Huidong Zhang, Dongmei Jiang and Qihua Yang, Chemical Communications, 2007, 547-558. (citations: 128)

C-5 Enhanced cooperative activation effect in the hydrolytic kinetic resolution of epoxides on [Co(salen)] catalysts confined in nanocages, Hengquan Yang, Lei Zhang, Lin Zhong, Qihua Yang* and Can Li*, Angewandte Chemie International Edition, 2007, 46: 6861-6865. (citations: 98)

C-6 Mesoporous organic-inorganic hybrid materials built using polyhedral oligomeric silsesquioxane blocks, Lei Zhang, Hendrikus C. L. Abbenhuis, Qihua Yang*, Yimeng Wang, Pieter C. M. M. Magusin, Brahim Mezari, Rutger A. van Santen* and Can Li*, Angewandte Chemie International Edition, 2007, 46: 5003-5006. (citations: 56)

C-7 Asymmetric ring-opening of epoxides on chiral Co(Salen) catalyst synthesized in SBA-16 through the “ship in a bottle” strategy, Hengquan Yang, Lei Zhang, Weiguang Su, Qihua Yang* and Can Li*, Journal of Catalysis, 2007, 248: 204-212. (citations: 51)

C-8 Enhancement of the performance of a platinum nanocatalyst confined within carbon nanotubes for asymmetric hydrogenation, Zhijian Chen, Zaihong Guan, Mingrun Li, Qihua Yang and Can Li*, Angewandte Chemie International Edition, 2011, 50: 4913-4917. (citations: 45)

C-9 Oxygen evolution from water oxidation on molecular catalysts confined in the nanocages of mesoporous silicas, Bo Li, Fei Li, Shiyang Bai, Zhijun Wang, Licheng Sun, Qihua Yang* and Can Li*, Energy & Environmental Science, 2012, 5: 8229-8233. (citations: 9)

C-10 Hydration of Epoxides on [CoIII(salen)] Encapsulated in Silica-Based Nanoreactors, Bo Li, Shiyang Bai, Xuefeng Wang, Mingmei Zhong, Qihua Yang*, Can Li*, Angewandte Chemie International Edition, 2012, 51, 11517-11521. (citations: 9)

D Co-catalysts in Photocatalysis

D-1 Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as cocatalyst under visible light irradiation, Xu Zong, Hongjian Yan, Guopeng Wu, Guijun Ma, Fuyu Wen, Lu Wang, and Can Li*, Journal of the American Chemical Society, 2008, 130: 7176-7177. (citations: 374)

D-2 Visible-light-driven hydrogen production with extremely high quantum efficiency on Pt-PdS/CdS photocatalyst, Hongjian Yan, Jinhui Yang, Guijun Ma, Guopeng Wu, Xu Zong, Zhibin Lei, Jingying Shi and Can Li*, Journal of Catalysis, 2009, 266: 165-168. (citations: 232)

D-3 The synergistic effects of two co-catalysts on Zn2GeO4 on photocatalytic water splitting, Baojun Ma, Fuyu Wen, Hongfu Jiang, Jinhui Yang, Pinliang Ying and Can Li*, Catalysis Letters, 2010, 134:78–86. (citations: 38)

D-4 Photocatalytic water oxidation on BiVO4 with the electrocatalyst as an oxidation cocatalyst: Essential relations between electrocatalyst and photocatalyst, Donge Wang, Rengui Li, Jian Zhu, Jingying Shi, Jingfeng Han, Xu Zong, and Can Li*, Journal of Physical Chemistry C, 2012, 116: 5082-5089. (citations: 54)

D-5 Roles of Cocatalysts in Photocatalysis and Photoelectrocatalysis, Jinhui Yang, Donge Wang, Hongxian Han, and Can Li*, Accounts of Chemical Research, 2013, 46, 1900-1909. (citations: 60)

D-6 Spatial Separation of Photogenerated Electrons and Holes among {010} and {110} Crystal Facets of BiVO4, Rengui Li, Fuxiang Zhang, Donge Wang, Jingxiu Yang, Mingrun Li, Jian Zhu, Xin Zhou, Hongxian Han and Can Li*, Nature. Communications, 2013, 4:1432. (citations: 53)

D-7 Dual Cocatalysts Loaded Type I CdS/ZnS Core/Shell Nanocrystals as Effective and Stable Photocatalysts for H2 Evolution, Lei Huang, Xiuli Wang, Jinhui Yang, Gang Liu, Jingfeng Han, and Can Li*, The Journal of Physical Chemistry C, 2013, 117 (22), 11584-11591. (citations: 11)

E Ultra Deep Desulfurization

E-1 Ultra-deep desulfurization of diesel: Oxidation with a recoverable catalyst assembled in emulsion, Can Li*, Zongxuan Jiang, Jinbo Gao, Yongxing Yang, Shaojun Wang, Fuping Tian, Fuxia Sun, Xiuping Sun, Pinliang Ying, Chongren Han, Chemistry-A European Journal, 2004, 10: 2277-2280. (citations: 139)

E-2 Ultra-deep desulfurization of diesel by selective oxidation with [C18H37N(CH3)3]4[H2NaPW10O36] catalyst assembled in emulsion droplets, Hongying Lü, Jinbo Gao, Zongxuan Jiang, Fei Jing, Yongxing Yang, Gang Wang and Can Li*, Journal of Catalysis, 2006, 239: 369-375. (citations: 127)

E-3 Hydrodesulfurization of 4,6-DMDBT on a multi-metallic sulfide catalyst with layered structure, Lu Wang, Yongna Zhang, Yuliang Zhang, Peng Liu, Hongxian Han, Min Yang, Zongxuan Jiang* and Can Li*, Applied Catalysis A: General, 2011, 394: 18-24. (citations: 7)

DALIAN INSTITUTE OF CHEMICAL PHYSICS, CHINESE ACADEMY OF SCIENCES

Welcome
Opportunities
Education

Campus Map
Contact
中文

Links
Old Website

Dalian Institute of
Chemical Physics, CAS
457 Zhongshan Road
Dalian, China 116023

Copyright 1999-2017. Dalian Institute of Chemical Physics, Chinese Academy of Sciences. All Rights Reserved.